Introduction to python-igraph

October 3, 2017

1 Introduction to python-igraph

In this tutorial, we will present the igraph module in Python in introductory level. igraph is a
collection of tools for graph and network analysis. At first, we need to import the module this
module:

In [22]: import igraph as ig
print ig.__version__

0.7.1

1.1 Undirected Graphs

Let’s start with a very simple part of igraph. By Graph() method, we can create a simple undi-
rected graph.

In [23]: g = ig.Graph()
print g

IGRAPH U--- 0 0 --

By g, we can get some general information about g. As you see in the above, graph g is
undirected with no vertex and no edge.

Then, by “add_vertices()” method, we can request to add vertices to the graph. In the following
example, 6 vertices are added to the graph g.

In [24]: g.add_vertices(6)
print g

IGRAPH U--- 6 0 --
As you see, right now ¢ has 6 vertices and 0 edge. now, it is time to add some edges to g. By

add_edge, we just add one edge to the graph. By add_edges, we add a list of edges to the graph.
Edges are defined by their end-points.



In [25]: g.add_edge(0,1)
g.add_edges([(1,2),(0,2),(0,3),(1,4),(4,5),(0,5)1)
print g

IGRAPH U--- 6 7 --
+ edges:
0--1 1--2 0--2 0--3 1--4 4--5 0--5

Right now, we introduce another function called summary(). As you see in the following, the
difference between g.summary() is that in the summary() the list of edges are not shown
anymore. This method can be useful when the graph is very big with a lot of vertices and edges.

In [26]: print g.summary()

IGRAPH U--- 6 7 --

There are three useful methods for checking is the graph is directed, weighted and connected.
The result is a boolean value. Besides by degree() function, we can have the degrees of vertices.

In [27]: print g.degree()
print g.is_directed()
print g.is_weighted()
print g.is_connected()

(4, 3, 2, 1, 2, 2]
False

False
True

Now, by plot() method, we can have a graphical presentation of the graph:
In [28]: ig.plot(g)

Out[28]:



In the next step, we are going to give labels to the vertices and edges and then plot the graph
again. We are going to color the vertices and edges as well.

In [29]: g.vs["label"]=["A","B","C","D","E","F"]
g.es["label"]=["a","b","c","d","e","£","g"]
ig.plot(g,vertex_color=["blue","green","yellow","orange","pink","gray"],

edge_color=["blue","green","yellow","orange","pink","gray","green"])

Out [29]:



1.2 Directed Graphs

In this section, we will see how we can build a directed graph and do whatever we have just done
on undirected graphs. At first, we need to build a directed graph:

In [30]: D = ig.Graph(directed=True)
print D

IGRAPH D--- 0 0 --
Now, by add_vertices(), add_edge() and add_edges(), we can add vertices and edges to the

graph. The important difference here is that when we add edges, the order of vertices are impor-
tant.



In [31]: D.add_vertices(6)
D.add_edge(0,1)
D.add_edges([(1,2),(0,2),(0,3),(1,4),(4,5),(0,5)1)

Like before, we assign labels to the vertices and edges of graph:

In [32] D.Vs[“label”]=["A","B","C","D","E","F"]
D.es[“label“]:[“a“,“b“,”C”,"d","e","f","g"]

Now, we check if the graph D is directed, weighted and connected:

In [33]: print D.is_directed()
print D.is_weighted()
print D.is_connected()

True
False
False

Here, D is not connected, because D is directed and in D there are some vertices with only
incoming edges. Therefore, from these vertices there is no path to other vertices. In order to check
this out graphically, we plot D.

In [34]: ig.plot(D,vertex_color=["blue","green","yellow","orange","pink","gray"],

edge_color=["blue","green","violet","orange","pink","gray","green"])

Out[34]:



®

The vertices C, D and F, have only incoming edges. Now, by degree() method, we can see the

degree of all vertices, but for a directed graph, it is better to have incoming and outgoing degrees
of each vertex. Here, we calculate all these 3 cases:

In [35]: print(D.degree())
print(D.degree(mode="in"))
print(D.degree (mode="out"))

(4, 3, 2, 1, 2, 2]
(0, 1, 2, 1, 1, 2]
[4, 2, 0, 0, 1, 0]

As you see, for every vertex v, d(v) = djy(v) + dout (V).



1.3 Some More Methods

In this section, we just introduce some more methods. The first two are vcount() and ecount()
which count the number of vertices and edges, respectively in a graph. In the following we see
the number of vertices and edges in both graphs g and D:

In [36]: print "Number of vertices and edges in g are ",g.vcount(), " and ", g.ecount()
print "Number of vertices and edges in D are ",D.vcount(), " and ", D.ecount()

Number of vertices and edges in g are 6 and 7
Number of vertices and edges in D are 6 and 7

Meanwhile, there are some special graphs that we can construct them directly, for example
complete graph which is built by Full() method, and tree which is built by Tree() method. As an
example, consider the two following graphs:

In [37]: F=ig.Graph.Full(4)
T=ig.Graph.Tree(6,2)

Here F is a K4 graph, while T is a tree with 6 vertices and each vertex, except leaves, has two
children. Let’s plot T:

In [38]: ig.plot(T)

Out [38] :



2 Practical Example

One of the most important applications of graph theory is finding the shortest path between two
points.

In [39]: g=ig.Graph(16)
g.add_edges([(0,1),(1,2),(2,3),(0,4),(1,5),(2,6),(3,7)
,(4,6),(5,6),(6,7),(4,8),(5,9),(6,10),(7,11)
,(8,9),(9,10),(10,11),(8,12),(9,13),(10,14),(11,15)
,(12,13),(13,14),(14,15)]1)
g.es["weight"]1=[1, 4, 2, 6, 1, 8, 3, 1, 9, 8, 4, 7, 5,8, 5, 4, 6,9, 1, 6, 6, 2, 7, 3]



In [40]: shortetPath=g.get_all_shortest_paths(0, to=15,weights=g.es["weight"], mode=3)
print (shortetPath)

(o, 1, 5, 9, 13, 14, 15]]

In [41]: shortestLength=g.shortest_paths_dijkstra(source=0, target=15, weights=g.es["weight"], n
print (shortestLength)

[[20.0]]



	Introduction to python-igraph
	Undirected Graphs
	Directed Graphs
	Some More Methods

	Practical Example

